A classification of accessible categories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A classification of accessible categories

For a suitable collection D of small categories, we define the D-accessible categories, generalizing the λ-accessible categories of Lair, Makkai, and Paré; here the λ-accessible categories are seen as the D-accessible categories where D consists of the λ-small categories. A small category C is called D-filtered when C-colimits commute with D-limits in the category of sets. An object of a catego...

متن کامل

Classification Theory for Accessible Categories

elementary classes (Shelah 1987) form a special case of the former (Lieberman 2011, Beke and JR 2012) and generalize Lκω-elementary classes. Surprisingly, I do not know any abstract elementary class which does not have an Lκω-axiomatization (as an abstract category). With Makkai, we failed to prove that uncountable sets with injective mappings form such an example. It seemed a long time that th...

متن کامل

Final coalgebras in accessible categories

We give conditions on a finitary endofunctor of a finitely accessible category to admit a final coalgebra. Our conditions always apply to the case of a finitary endofunctor of a locally finitely presentable (l.f.p.) category and they bring an explicit construction of the final coalgebra in this case. On the other hand, there are interesting examples of final coalgebras beyond the realm of l.f.p...

متن کامل

Accessible Categories and Homotopy Theory

Definition 1.1. A weak factorization system (L,R) in a category K consists of two classes L and R of morphisms of K such that (1) R = L , L = R and (2) any morphism h of K has a factorization h = gf with f ∈ L and g ∈ R. Definition 1.2. A model category is a complete and cocomplete category K together with three classes of morphisms F , C and W called fibrations, cofibrations and weak equivalen...

متن کامل

Covers in finitely accessible categories

We show that in a finitely accessible additive category every class of objects closed under direct limits and pure epimorphic images is covering. In particular, the classes of flat objects in a locally finitely presented additive category and of absolutely pure objects in a locally coherent category are covering.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2002

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(02)00126-3